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AIIInd-The paper treats the tralllllission of wave motion from one solid to another when the bodies are
iniliaIIy separated by a small pp. If a pulse of elastic: waves strikes the surface of one of the solids and the
amplitude of the pulse is Iarae enouP. the solids can come into contlet and interact locally. The dynamic
interaction is treated DIm, Coulomb's friction law, and a method is presented for fiDdiq the slip and stick
zones in the contlet rqion when the incidence anate of the pulse is subcritical. Unusual results are
encountered for larae friction coeflicients.

INTRODUCTION
In treating the reflection and transmission of elastic harmonic waves between two solids that
can separate, it is discovered that the solids must be pressed together for a continuing
interaction[l]. If this is not done, the solids move apart during the early stages of the process,
and a continuously maintained train of incident waves sees a free surface. The early part of the
interaction can be studied, however, by analyzing a pulse of finite extent. In such cases it is not
required that the solids be pressed together and. in fact, interaction is possible even if there is
small initial gap between them.

In a previous paper[2J, a solution was given for the problem of an elastic pulse striking the
frictional interface between two half spaces and producing localized regions of separation and
slip between the bodies. In this paper we consider the related problem for which a localized
region of contact between two otherwise separated bodies propagates along the interface due to
the action of an incident pulse in one of them. The problem is illustrated in Fig. I. The two half
spaces are initially separated by a uniform gap d and the upper solid has a tangential velocity u
to the right as shown. A P or SV pulse strikes the interface at an angle of incidence 80 and
produces P and SV pulses reflected at angles 8" 82, If some interaction occurs between the
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Fig. I. Incident. reflected and refracted waves at the interface with an initial gap d.
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bodies, we also anticipate the development of refracted P and SV pulses in the upper solid at
angles 63, 64 respectively.

The velocities of P and SV waves are denoted by CL, Cr respectively and we use bars to
distinguish the properties of the upper body. The angles are related by the equation

sin 60 = sin 6. = sin 62 = sin 6) = sin 64

Co CL Cr CL cr
(1)

and the disturbance due to the pulse propagates to the right along the surface of the lower body
at velocity

v = colsin 60, (2)

As in [2], we restrict attention to those values of 60 for which v is supersonic with respect to
both solids, i.e. eqn (1) defines real values for all the angles 6;.

METHOD OF SOLUTION
As in[2], we solve the problem by superposition of two parts, but here the initial solution

corresponds to the situation where there is no interaction between the half spaces, i.e. we find
the reftected pulses on the assumption that the surface of the lower body is free of tractions.
This is a classical problem [3] and need not be considered here. The pulse will cause local
displacements "" 112 at the free surface which are stationary with respect to the dimensionless
moving co-ordinate

.,., = ko(x, sin 60 - cot). (3)

The wave number ko can be regarded as the reciprocal of a characteristic length for the pulse.
In other words, a bulge or depression runs along the free surface at velocity v, its shape being
described by the displacement "2("")'

If the maximum height of this bulge is less than d, the free surface solution is the final
solution of the problem and the half spaces do not interact. However, the interesting case is
that in which contact occurs. A corrective solution must then be superposed to satisfy the
physical conditions of the problem and eliminate the interpenetration predicted by the free
surface solution alone.

The gap between the bodies is

and we define the gap opening velocity for the free surface solution

G( ...)=~=-c" ~o ~ at o~aT/'

There is also a corresponding slip velocity

(4)

(5)

(6)

A positive value of Ho corresponds to the upper body slipping to the right over the lower body.

THE CORRECTIVE SOLUTION

In the corrective solution, equal and opposite tractions are applied to the two surfaces to
satisfy appropriate conditions on displacements in contact zones. This solution is developed
in [2] from the results for a moving point force [4].
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If N(.,,). S(.,,) are the corrective normal and tansential tractions respectively. the cor­

responding corrections to the gap opening and slip velocities are

where

and

AI=~ [(I +2m,m2- ml) (I +2,"~~2- ,"2
2
)].

SID 8. p.R p.R

A2=~ [ml(l + m2
2

) + '"2(1_+ ,"2
2
)]

sin 81 p.R p.1i

(7)

(8)

(9)

(10)

(II)

'"2 = cot 8~ (12)

The normal traction N is taken positive if tensile. while S is positive when it acts to the right on
the lower body. Notice that G. H are inftuenced only by the local values of N. S. The
coefficients A2• A) are positive. but AI may be of either sign and vanishes for identical materials.

BOUNDARY CONDITIONS
If the free surface solution predicts interpenetration (Le. 60<.,,)<0 for some .,,). we

anticipate the development of adhesive or slip contact regions. The tractions in these regions
can be determined from physical conditions leading to equalities. e.g. that the gap is zero in a
contact zone. whereas the extent of the zones is determined from physical constraints leading
to inequalities. e.g. that normal tractions must be non-tensile.

STICK

In a stick zone. the gap is zero and there is no slip. Thus

g(.,,) = GO<.,,) + G( 11) = o.

Ii(.,,) = HO<11) + H(11) = o.

Substituting for G. H from (7) and (8) and solving for S. N. we find

(14)

(IS)

(16)

(17)

The permissible extent of the stick zone is determined by the conditions that normal tractions
must be non-tensile

(18)
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and the tangential tractions must lie in the range

ISI~ -/N (19)

where../ is the coefficient of friction. In fact, (18) is included within (19) and can be disregarded.
We assume Coulomb friction with equal static and kinetic coefficients.

Substituting (16) and (17) into (19), we find

(20)

and hence

(21)

In view of the absolute value, (21) is equivalent to two inequalities which simplify to

Hosgn AI ~ 12GO' (22)

Hosgn AI ;;a. 11Go: 11 >0, (23)

Hosgn AI ~ '}'IGO; 11 <0, (24)

where

A3 / 1-~1
_ I :IAlt. -~ (25)11 - / - / ' 12- f+/

and

f = A2/1A 11· (26)

Notice that the algebraic sign of 11 is the same as that of </- f) which was found to critically
influence the nature of the solution in [2]. We also note that 12 may be of either sign, but
1121 ~ 11a1· The special case of zero friction corresponds to 11 =12 = IIi

SLIP

In slip zones, the gap is zero and eqn (14) still applies, and hence

A2N - AIS = ,."GOICL

from (7).
The condition for slip with Coulomb friction is

S = - /N sgn Ii

We define conforming slip as that for which Alii> 0 and hence

S= -fNsgnA I

Solving (27) and (29) for S, N, we find

(27)

(28)

(29)

(30)

(31)
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and the slip velocity is

from eqns (8). (30). (31) and (25).
It follows that conforming slip is only permissible if

and the requirement of non-tensile tractions imposes the further condition

from (31).
In non-conforming slip AIii < 0 and we find

Hence. non-conforming slip is only possible if

and the requirement N Et 0 leads to the further condition

779

(32)

(33)

(34)

(35)

(36)

(37)

(38)

Go Et 0;

Go=-O;

'YI >0;

'YI <0.

(39)

(40)

SEPARATION

In a separation zone there are no corrective tractions and hence the free surface velocities
Go, 8 0 are unchanged. The physical condition for separation is that the gap g(1/) be positive.
Notice. however, that when separation starts we must have Go positive. Thus. a transition from
contact to separation can only occur when Go=- 0 and the reverse transition when Go Et O.

GRAPHICAL REPRESENTATION
The use of these results in the solution of particular problems is best demonstrated

graphically. The first step is to solve the free surface problem for the lower body to find the
functions Go(") and Ho<,,). We then plot the expressions 'YIGOand 'Y2GO as functions of 1/ to
divide the diagram into regions representing the ranges of the controlling inequalities.

Hence, by plotting the function 8 0 sgn AI on the same figure we can determine in which
regions stick, slip and separation will occur.

We first consider the more common case 'YI > 0 (see[2)). Figure 2(a) shows 'Y.Go. 'Y2GO.
Hosgn AI for a typical example corresponding to the free surface displacement of Fig. 2(b).
Notice that if the pulse raises a bulge (as it must do if contact is to occur) the gap opening
velocity will be negative on the right side of the bulge and then positive. since the disturbance
moves from left to right.
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Fia. 2(a). Graphical determination of slip and separation zones for a typical example, 11> O. (b) Distortion
at a free surface due to the incident pulse of (a).

The diagram is shaded in accordance with the inequalities defining the conditions for stick
and slip. For example, stick is only permitted in the range 12GO Silt Hosgo AI Silt 1,Goand this only
exists for Go < 0 since 1'I;ii1; 1'2 when 1'1 > O. These inequalities define the region between
the two lines 1'2GO, 1'IGO in the right part of Fig. 2(a) as shown.

For the particular example illustrated we reason as follows:
Contact will not occur to the right of A (Fig. 2b), since the corrective solution has no effect

ahead of the disturbance. We identify the corresponding point A in Fig. 2(a) and note that it
falls in the stick region, so the contact is initially adhesive and remains so until B. Conforming
slip commences at B and persists to C where there is a transition to separation.

Notice that for 1'1 > 0, separation must always start when Go passes through zero i.e. at the
maximum point of the free surface bulge-since neither stick nor slip is permitted for Go < O.

Away from the pulse, Go tends to zero, but Ho tends to the global slip velocity u which is
here regarded as a prescribed quantity. The value of u will depend upon the way in which the
bodies are supported. The limiting value u =0 arises if both bodies are prevented from moving
tangentially. The curves for Go, Hoare then similar, passing through zero at the same value of ,.,
and hence the contact will consist of either all slip or all stick. The tangential traction
transmitted in the contact zone will generally add up to a tangential force which must be
resisted by the support.

Another limiting case of interest is that in which the bodies are unconstrained tangentially so
that no net tangential force is transmitted between them. In this case we have to choose u to
make the sum of the tangential tractions zero.

If the coefficient of friction f is zero, it follows from eqns (25) that 1. =12 = 1/i > O. The
effect on Fig. 2(a) is to make the two lines 1'IGO' 1'2GO coincide, eliminating the stick region as
we would expect. The solution then proceeds as before. Contact must occur between A and C
but it will be either conforming or non-conforming slip depending on the value of Hosgn 1'1.
Separation occurs everywhere to the left of C.

'Yt<O

Figure 3(a,b) shows an example for the case 1', < 0 (j < i and 12> 1'.). As in[2), the
inequalities are not not mutually exclusive-stick and non-conforming slip are both possible for
Hosgn AI < 1'1 Go. Go> 0 and the separation point is indeterminate. We emphasize that the
solution is not unique in the sense that no physical principles are violated by assuming that
separation starts at any arbitrary point to the left of B or indeed that separation never occurs
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Fia. 3(a). Determination of slip and separation zones for 11 < O. (b) Free surface distortion for (a).
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and the gap remains closed. However, the solution in which separation starts at B miaht be
preferred in that it gives a smoothly opening gap, i.e. the initial value of g is zero. Furthermore,
if a small irregularity in one of the surfaces causes local separation to the left of B, it will be
perpetuated, since the gap continues to grow. By contrast, a similar gap developed to the riaht
of B will close again since GO<.,,) < O. In this sense, contact to the left of B could be regarded as
unstable.

The corrective solution, the extent of the slip and stick zones and the contact tractions
depend on the incident pulse only through the functions 0 0(",) and Ho("') describing the relative
motion of the surfaces in the free surface solution. Such relative motion could be produced by
other means-notably if the bodies are curved and roll over each other with microslip so that
the contact region moves along the interface at velocity v. This problem is treated in a
companion paper [5].
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